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Critical lines of a two-component gas-liquid system can be plotted as a function 
of temperature and pressure, as is usually done with experimental results, and 
also as a function of the density coordinates. In the latter representation the 
mathematical double points can be found with higher precision. The existence 
of such a point depends on the values of the energy parameters, and the locus 
of these parameter values giving rise to double points maps the boundary 
between the different kinds of phase diagram. We show how the double point, 
which in the case of the lattice gas is due to an accidental symmetry, can be 
regained in various other, less symmetrical models by adjustment of the inter- 
action parameters. 

KEY WORDS:  Binary systems; gas-liquid systems; Tompa model; lattice 
gas; van der Waals equation. 

1, I N T R O D U C T I O N  

The critical lines for a two-component system form the infrastructure for 
the complete phase behavior (i.e., the equation of state, its regions of 
coexisting phases, the tricritical points, etc.) of the 'binary gas-liquid 
systems for each given set of the interaction parameters. Critical lines refer 
to the locus of critical points. These lines can be used to find impending 
gas-liquid, liquid-gas, or even gas-gas separations, as well as intermediate 
states of the above. The critical lines have segments that are actually 
unstable, and hence do not represent physically observable states, since 
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systems go into a three-phase state which usually lies close to the unstable 
critical line coordinates. We do not take this option into account, except in 
the calculations done in the last two cases, where we indicate at what point 
the critical line will become unstable. 

For each set of energy parameters, i.e., for each point in the master 
diagram, one finds a different structure of critical lines. Each kind of phase 
diagram, as classified by the connectivities of the phase lines, corresponds 
to a given area in the master diagram. The boundaries between these 
regions can be found by looking for the existence of double points in the 
critical line diagram, that is, if a double point occurs in the critical line 
diagram, the corresponding energy parameters represent a point in the 
master diagram which is a boundary point between two regions. This 
procedure is trivial for the lattice gas, since this model has a very high 
"accidental" symmetry. This is also true, but to a lesser extent, for the 
extended Tompa model as described below. In the more general cases we 
show how the double points can be established by trial and error. It 
is of great practical importance that these adjustment are done in the 
density-density diagram, since the branches that form the double points in 
the p-T diagrams are all tangent to each other, which makes the point less 
visible in these plots. 

The variety of critical lines plotted in density space have in common 
that, provided the unstable parts are also incorporated, they all have four 
rather trivial "anchor" points. (1) In exceptional cases there may be addi- 
tional closed loops. (2) The anchor points are: (1)the critical point of the 
pure 1 component, (2)the critical point of the pure 2 component, (3)the 
critical point associated with jamming, and (4) the unstable point at zero 
temperature. The various ways to connect these points together make up 
the ensemble of critical lines for each given set of interaction parameter 
values. Density space consists of a two-dimensional plot using the coor- 
dinates xl and x2, the density of component one (resp. two) as a fraction 
of the volume occupied. Since 0 < X l <  1 and 0 < x 2 <  1 as well as 
(Xl + x2) < 1, the allowed values for the coordinates lie inside a triangle. It 
is convenient to introduce a third coordinate: Xo= 1 - x l - x 2 ,  which, 
in the case of the lattice gas, can be interpreted as the density of the 
unoccupied sites: the holes. 

To illustrate what we have in mind, consider the possible connection 
between the following four anchor points on the border of the triangle: C1, 
the critical point of the pure 1 system (coordinates x~ ~ 0, x2 = 0); C2, the 
critical point of the pure 2 system (coordinates Xl = 0, x2 r 0); Co, the criti- 
cal point of the jammed system (xl + x2 = 1); and the unstable Critical 
point C u (Xl = x2 = 0). These four points may be connected in two different 
ways: C1 connected to C2 and Co to Cu, called type II by Scott and van 
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Konynenburg, (3) or one might connect C 1 to C2 and C 2 to Co as in 
type III. The two remaining corners (xl = 0, x2 = 1 and Xl = 1, x2 = 0) are 
connected with each other by an entirely unstable line and hence are 
ignored in this example. Under special circumstances, i.e., certain combina- 
tions of energy parameter values, all these four anchor points are connected 
to a vertex which is a double point (DP). We call this the van Laar point (4) 
if the double point is also a tricritical point. In the case of a lattice gas such 
DPs are easy to find; they occur when two of the three energy parameters 
are equal. 

Projecting the x~, x2 critical lines as a p - T  plot can be done in two 
different ways, depending on the choice of coordinates for the holes. 
Returning to the special case that two energy parameters are equal, we may 
associate the holes with the unequal energy parameter, which leads to a 
symmetric p - T  plot, or we may associate the unequal parameter with one 
of the two components. In this case we deal with the permuted symmetric 
case. In the first case the points C~ and C2 coincide; in the second case one 
of the critical temperatures is equal to the critical temperature at which the 
pressure goes to infinity. We let C2 correspond to Co and C1 to the weak 
interaction, since this label refers traditionally to the solvent molecules. The 
second case was dealt with by Schouten et al. (5~ As shown in the work of 
Furman and Griffiths, (6) the van der Waals equation is in most cases rather 
close to the symmetric permuted case. We refer to Fig. 9 in Furman and 
Griffiths' paper. (6/ This is also seen near the van Laar point. (7) If one 
"deforms" the van der Waals case back into the lattice gas, the points 0, 0 
and 0, 1 become interchangeable if the energies of the second particle (U2) 
and of the holes (U0) are equal. In this case one branch of the critical line 
is a straight line from C2 (now at 0, 1/2) to the point Cu and we obtain the 
permuted lattice gas. In the van Laar case this line is almost straight from 
C2 at (0, 1/3) to Cu at (1, 0). We show elsewhere that this branch cannot 
be factorized out as is the case in the lattice gas. 

Since the coordinates in the master diagram that give rise to a double 
point in the critical line structure play the role of separators between the 
different types, we illustrate how these points can be established through 
adjustment of parameters in a number of models different from the simple 
lattice gas: the extended Tompa model, the intermediate model (inter- 
mediate between the lattice gas and the van der Waals equation for binary 
mixtures), and a combination of the Tompa model and van der Waals 
equation. 

The Tompa modification of the lattice gas (8) reverts to the Flory-  
Huggins model for chain molecules (9) if one deals with solvent and solute 
only, i.e., if the holes are ignored. Although the parameter N (the number 
of links in the chain molecule) was supposed to be very large in the original 
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application of the model, we employ this parameter to express the dif- 
ference in size of the molecules of each component of the mixture; hence, 
values in the neighborhood of one will be used. 

2. CALCULATION OF THE CRITICAl. LINES 

The free energy per unit volume V o of the generalized lattice gas is 
given by (1~ 

F 

Vo 
- - -  - ( w l x  2 + w12xlx2  + w 2 x ~ ) -  I~Xl  - ~2x2 

+ T[xllnXl+~lnx2+(Xo-Cr)lnxol (1) 

where T is the temperature, a is a parameter (cr = 0 given the lattice gas 
and a = 1 the van der Waals binary mixture equation), and N is an another 
parameter which expresses the "length" of the second type of molecule with 
respect to the first. The remaining variables are the chemical potentials #1 
and #2, the energy interaction parameters between like molecules wa and 
w2, the interaction between different types of molecules w12, and the 
density xl and x2 of species of type 1 and type 2, respectively. 

The total density is given by p = Xl +x2 and the concentration by 
c = Xz/(Xl + x2). The resulting equation of state is 

pVo + WlX~ + W12XlX  2 "3 t- W2 x2 

=T[ (tr-1)lnxo+xl+x2a+x2 ] 
Xo ~ - - x 2  (2) 

where Vo is a constant which describes the volume occupied by a molecule 
of type 1. The volume occupied by a molecule of type 2 is approximately 
NVo.  

In order to obtain the critical line, the second and third derivatives of 
the free energy with respect to Xl and x2 are needed to calculate the density 
derivatives at constant concentration. The condition for the limit of 
stability in the coexisting phases is given by the Hessian: 

(Zl~O -~- ~2 ~0 "~ ~1 ~2 = 0 

with 
~1 = T / x l -  U1 

(X 2 ~ "  T/Nx2- U2 
~o = I-(1 + ~r/Xo)/Xo] T -  Uo 

(3) 

(4a) 

(4b) 

(4c) 
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with 

U 1 = 2w~ - w~2, U 2 = 2w2 - w~2, U0 = w~2 

The coordinate Xo = 1 - X l - x 2  represents the holes in the case of the 
lattice gas (a = 0); otherwise it is just a coordinate of convenience. If, in 
addition, N =  1, the model is permutationally symmetric. Note that the 
spinodal can be expressed as T ( x l ,  x2), where the spinodal temperature is 
the solution of the second-order equation (3). Often, but not always, one 
root leads to a negative temperature. The next higher derivative at constant 
T can be expressed either in a symmetrical way (1~ or directly as follows: 

= s',(~2 + ~o) + s ; ( ~ l  + ~o) ~, - s ; ( ~ ,  + c~2) 2 (5) 

which has the practical advantage that the resulting expression is again of 
the second order in the temperature, si stands for the second derivatives of 
the entropy with respect to the corresponding variables: 

s~ = 1 /x l ;  s2 = 1 / N x l ;  s o = (1 + a/Xo)/X o (5') 

From the above equations we can establish the critical line as follows: 
Eq. (3) expresses the spinodal temperature as function of x I and x2 for each 
given set of parameters U1, U2, and Uo, since x o is determined by xl and 
x2. This temperature is inserted in Eq. (5), which depends on T, xl ,  and x2. 
In other words, solving (3) and (5), i.e., eliminating the temperature T, 
leads to a curve in x~ and x2 space for given set of values of the energy 
parameters. Although it is possible, after a considerable number of 
algebraic manipulations, to obtain a polynomial in xl and x2 for the criti- 
cal line, our results were obtained by a numerical solution of the above 
equations using the program of the CMLIB of the NIST (the National 
Institute of Standards and Technology) which were transported on the tape 
to the Data General machine at Erciyes University in Kayseri. The 
subroutine used was called SNLS1E or SNSQE. 

After the critical line was established as a function of xl and x2, the 
data were translated into pressure and temperature values using Eqs. (3) 
and (2). Some sections of these critical lines may be unstable and are 
indicated by dashed lines in the figures. 

3. R E S U L T S  

The results are given in three groups of figures. Figures 1-4 are used 
to discuss the pure lattice gas for energy parameters at, and near, the 
double point. The first two figures show the need for permutation, the last 
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Fig. 1. Critical pressure p as a function of the critical temperature T for a lattice gas with 
equal energy parameters: w l  = w2 = 3 and w0 = 5. The insert is the corresponding xl-x2 plot. 
C x is the double point. 

two show the effect of small deviations. The second set, Figs. 5-6, describes 
the result of symmetry breaking of the lattice gas model, spectacular in the 
unpermuted case, less spectacular in the permuted case. Figs. 7-9 show 
the existence of double points for two different "mixed" models: Fig. 7 
shows an intermediate model between the lattice gas and the van der Waals 
equation for binary liquids, and Figs. 8 and 9 are used to compare the 
van Laar double point with the double point obtained in a mixed Tompa-  
van der Waals model. 

Figure 1 gives the p-T critical line for the lattice gas with symmetrical 
parameters: Wl = w2 = 3, Wo = 5 (Wo = wl + w2 - w12). At the crossing point 
Cx the four branches C:~-Co, C~-C~, CzC2, and C=-C, meet and have a 
common tangent. The branches C=-C~ and Cx-C 2 coincide. The branch 
Cx-Co has a vertical tangent at T =  2.5, which corresponds to the critical 

Fig. 2. 
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Same energy parameters as in Fig. 1 with permutation of x2 into x0: w l  = w0 = 3 and 
w 2 ~ 5 .  
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Fig.  3. 
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D i s a p p e a r a n c e  o f  t he  d o u b l e  p o i n t  t h r o u g h  m o d i f i e d  e n e r g y  p a r a m e t e r s :  w~ = 3 + A, 

w 2 = 5, a n d  w 0 = 3 - A, w i t h  A = 0,05. 

point of consolution for the fully occupied lattice (jamming). In this par- 
ticular model the double point is also a tricritical point. This is due to the 
symmetry of the model (12) and this property usually disappears when the 
symmetry is broken. 

The same data for Xl and x2 are used to plot Fig. 2, but the coordinate 
x2 is permuted with x o = 1 - x l  - x 2 .  This case corresponds to the calcula- 
tions performed by Schouten et  al. (5). The resulting figure shows the same 
behavior; C1 and Co (formerly C2) are separated in pressure, but remain 
almost at the same temperature T =  1.5. Compared to experimental plots of 
this type, the lattice gas has the drawback that the critical pressure P2 lies 
much higher than the critical pressure p~, which is not always the case; 
they may be more or less equal, sometimes even reversed in order. The 
permuted symmetric case is somewhat similar to the van der Waals case at 
the van Laar point, as found by Deiters and Pegg, (~3) as referred to by 
Meijer.(14) 
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Fig.  4. C h a n g e  in c o n n e c t i v i t y  if 3 = - 0 . 0 5 .  
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Fig. 5. Symmetry  breaking of  case 1, due to N # 1: T o m p a  model  wi th  N = 2: w 1 = 3 .656854,  

w 2 = 2 . 0 ,  a n d  w 0 = 9 . 6 5 6 8 5 4 .  Insert contains  the corresponding x ~ - x  2 plots: (a)  for N =  1; 

(b)  f o r  N =  2. 

Slightly unequal values of the parameters Wl and Wo lead to figures in 
which the branches are disconnected. Depending on the sign of the devia- 
tion, the unstable point Cu may be connected with Co (Fig. 3) or with Ct 
(Fig. 4). In both cases, the cusp which was originally situated at the 
tricritical point remains, but no longer coincides with the other branch. It 
can be shown that this cusp is the point at which the critical line becomes 
either metastable or stable, depending on nonlocal conditions. The 
secondary cusp near Ct is not associated with this transition; it is purely 
due to the projection and disappears for different values of the energy 
parameters. Also, the crossing of the lines in Fig. 3 is due to the projection; 
these points belong to different densities and concentrations. As explained 
in ref. 15, the relation between Fig. 3 and Fig. 4 is easy to see if an xl-x2 
plot is used. For equal parameters the double point is a true crossing point 

1.00 . . . . . .  o 
0.80 02 

0.60 Cx 
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0.40 

0.20 / / t 
Cu/" 

0.0( ' f ' ' ' 
.35 1.40 1.60 1.80 2.00 2.20 2.40 

T 

Fig. 6. T o m p a  mode l  with permutat ion:  N =  2; w 1 = 3 .656854,  w 2 = 9.656854,  and w o = 2.0. 
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and is also a tricritical point, and any deviation from equality that makes 
this point breaks open. 

We will now discuss various other ways in which the symmetry of the 
lattices gas can be broken, aside from introducing unequal energy 
parameters. They are: the Tompa model, the intermediate van der Waals 
model, and a combination of these two. 

The coincidence of Ca and C2 in Fig. 1 can be lifted by introducing a 
value of N >  1 (Tompa model), as is shown in Fig. 5. The insert shows the 
corresponding XxX2 curve (labeled b). No permutation was used in this 
figure. The crossing point is again a true double point, as shown, (16) but 
no longer a tricritical point. The crossing point for the lattice gas ( N =  1 
and cr = 0) occurs when two of the energy parameters, for instance, w 1 and 
w2, are equal, which implies U1 = U2. In ref. 1 it was shown that the 
crossing point remains present when U1 = N~/2U2 in the Tompa model. We 
now will use W l = 2 ( 2 x / N - 1 ) ,  w2=2, and Wo=4(x /N+ 1), with N--2.  
For N =  1 this corresponds to case d of Fig. 1 of ref. 1 (Wx = w2 = 2, Wo = 8) 
and this critical line is shown as curve a in the insert. This is different from 
the choice used in Fig. 1: w l - -w2=3 ,  Wo=5; the general shape of the 
N = 1 figures is rather similar. Not surprisingly, the N # 1 looks drastically 
different. The dependence of T(C2) on N is given in the Appendix; T(C~) 
remains the same: wl/2. Higher values of N will fold the curve between C~ 
and C2 more and more open. 

The permuted Tompa model leads to p-T plots given in Fig. 6. The 
crossing point C~ is connected to C1, C2, and C, as was the case in Fig. 1, 
but the branch towards Co goes through a deeper minimum, which even- 
tually, for larger values of N, leads to a negative pressure. 

A different variation on the lattice model is the intermediate model 
used for Fig. 7. Intermediate means a value for a in Eq. (1) between the 

Fig. 7. 
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Intermediate model under double point conditions: N = I ,  a = 0 . 5 ;  w j = l . 0 ,  

w2 = 3.234549, and w0 = 0.637579. 
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lattice gas value ( a = 0 )  and the van der Waals value (o-= 1). In the last 
case the four branches of the critical lines meet each other if the van Laar 
condition is fulfilled (the van Laar point is a specific point in energy 
space(t3~). If a is lowered and the energy parameters are kept the same, the 
branches will disconnect. For  a = 1/2 we adjusted the energy parameter w2 
so that crossing is obtained again. The value for Aw which makes the 
crossing point reappear was taken from Fig. 6b in ref. 1 to be 0.35625. The 
resulting p-T plot in this case looks rather similar to the plot of the lattice 
gas in Fig. 2. However, the crossing point is no longer necessarily a 
tricritical point. 

Finally, we combined the Tompa model with the van der Waals equa- 
tion near the van Laar point. The idea for using the Tompa model is that 
for N ~ 1 the model expresses the unequal size of the molecules. The energy 
parameters corresponding to the van Laar point in the master diagram of 
the van der Waals equation lead to a critical line structure with a double 
point that is at the same time a tricritical point, as shown in ref. 1. In the 
same paper it was illustrated that a small deviation from zero of the k 
factor, as given in w~2=2(1--k)(wlw2) 1/2, leads to an opening up of the 
double point (ref. 1, Fig. 6). 

Starting again with the van Laar condition as given in ref. 12, we now 
introduce N = 1.05 and find, as expected, a similar opening up of the critical 
line near the crossing point as was found in the previous case when the 
parameters were N =  1 and k = 0.01. However, one can also close the gap 
by adjusting the potential parameters (in this case w2) as it were to c o m -  

x2 

1.00 

0.80 

0.60 

0.40 
C2 

0.20 

0.00 
0.00 0.20 010.40 0.60 0.80 1.00 

xl 

Fig. 8. Combined Tompa  and van der Waals  (a = 1, N r  1) model: the critical lines in the 
x~-x  2 plane. Solid lines are the stable and the dashed lines are the unstable parts of the critical 
lines. The dots give the limits of stability. (a) The van der Waals case at the van Laar point, 
given for reference purposes: N =  1, wl = 1.0, w2=2.884549=(Wz)vD and w 0 = w  l + w  2 -  
2(WlW2)l/2~Wgeom . (b) N = l . 0 5 ,  Wl=l .0 ,  W2=(W2)vL , W0=Wgeo m, (C) N = l . 0 5 ,  % = 1 . 0 ,  
w2 = (Wz)vL + Aw, with Aw = -0 .1 ,  w0 = Wgeom. (d) Same as (c), with A w =  -0.5.  
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Fig. 9. T h e  cr i t ica l  lines in the  p-T plane:  (A)  v a n  der  W a a l s  a t  the  v a n  L a a r  po in t :  cr = 1, 

N =  1. (B) a = 1, N =  1.05; w I = 1.0, Aw = --0 .0579,  a n d  Wo = Wgeom. 

pensate for the effect of the nonunit value of N. The value Aw = -0.1 
(case (c)) clearly overshoots this goal. In this fashion the double point is 
restored, using Aw = -0.0519, but this point is no longer a tricritical point. 
This is illustrated in Fig. 8. The resulting p-T  critical line is given in Fig. 9. 
Despite the fact that the x~-x2 plot is different from the van Laar case, we 
found that the p-T  curves are almost identical except for a small displace- 
ment. It is often observed that the pressure-temperature results are rather 
insensitive to the underlying choice of densities. This insensitivity also plays 
a role in interpreting data in the form of equations of state, since most 
data are given as pressure and temperature information. Again, it may be 
worthwhile to mention that solid lines are the stable and the dashed lines 
are the unstable parts of the critical lines in the figures. 

From the last part we conclude that the van der Waals-Tompa 
expression shows that it is possible to construct a van Laar-like p-T  
plot, which is based on a crossing point in the xl-x2 coordinates that is 
not tricritical and that this p T  plot is barely different from the actual 
van Laar plot, which does have a tricriticat point. This implies that it is 
very difficult to extract basic parameters from experimental critical lines of 
this kind on the basis of critical lines alone. 

APPENDIX 

The positions of the three anchor points C1, C2,  and Co for the van 
der Waals-Tompa model are given by the following equations. 

The coordinates of the point C1 are independent of the value of N, but 
depend on a. The position is given by (1) the following coordinate values: 

X 1 ~--- {[9 + 8 ( a -  1)]1/2-3}/4(a - 1); x 2 = 0  (A1) 

822/66/3-4-14 
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The point  Co is independent  of a, but  is dependent  on N; its posi t ion 

is given by 

xl  = N~/2/(1 + N1/2); x2 = 1/(1 + N v2) (A2) 

The coordinates  of the third anchor  point  C 2 depend both  on N and  

on  a and  canno t  be given explicitly since they are the roots of an equat ion  

of the third degree (except when either N = 1 or when cr = 0). The equat ion  

expressed with the help of x0 is given by 

3 1 
2(1- -  Xo)2 a + Xo(1-- 2Xo) = Xo ( ~ - -  l ) (A3) 

from which one can determine xl  = 1 - X o  and  x 2 = 0. 
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